home *** CD-ROM | disk | FTP | other *** search
/ CU Amiga Super CD-ROM 16 / CU Amiga Magazine's Super CD-ROM 16 (1997-10-16)(EMAP Images)(GB)[!][issue 1997-11].iso / CUCD / Graphics / Ghostscript / source / gximage4.c < prev    next >
C/C++ Source or Header  |  1997-07-11  |  9KB  |  300 lines

  1. /* Copyright (C) 1994, 1995, 1996, 1997 Aladdin Enterprises.  All rights reserved.
  2.   
  3.   This file is part of Aladdin Ghostscript.
  4.   
  5.   Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND.  No author
  6.   or distributor accepts any responsibility for the consequences of using it,
  7.   or for whether it serves any particular purpose or works at all, unless he
  8.   or she says so in writing.  Refer to the Aladdin Ghostscript Free Public
  9.   License (the "License") for full details.
  10.   
  11.   Every copy of Aladdin Ghostscript must include a copy of the License,
  12.   normally in a plain ASCII text file named PUBLIC.  The License grants you
  13.   the right to copy, modify and redistribute Aladdin Ghostscript, but only
  14.   under certain conditions described in the License.  Among other things, the
  15.   License requires that the copyright notice and this notice be preserved on
  16.   all copies.
  17. */
  18.  
  19. /* gximage4.c */
  20. /* 12-bit image procedures */
  21. #include "gx.h"
  22. #include "memory_.h"
  23. #include "gpcheck.h"
  24. #include "gserrors.h"
  25. #include "gxfixed.h"
  26. #include "gxfrac.h"
  27. #include "gxarith.h"
  28. #include "gxmatrix.h"
  29. #include "gsccolor.h"
  30. #include "gspaint.h"
  31. #include "gxdevice.h"
  32. #include "gxcmap.h"
  33. #include "gxdcolor.h"
  34. #include "gxistate.h"
  35. #include "gzpath.h"
  36. #include "gxdevmem.h"
  37. #include "gxcpath.h"
  38. #include "gximage.h"
  39.  
  40. /* ---------------- Unpacking procedures ---------------- */
  41.  
  42. private const byte *
  43. sample_unpack_12(byte *bptr, int *pdata_x, const byte *data,
  44.   int data_x, uint dsize, const sample_lookup_t *ignore_ptab,
  45.   int spread)
  46. {    register frac *bufp = (frac *)bptr;
  47.     uint dskip = (data_x >> 1) * 3;
  48.     const byte *psrc = data + dskip;
  49. #define inc_bufp(bp, n) bp = (frac *)((byte *)(bp) + (n))
  50.     uint sample;
  51.     int left = dsize - dskip;
  52.     static const frac bits2frac_4[16] = {
  53. #define frac15(n) ((frac_1 / 15) * (n))
  54.         frac15(0), frac15(1), frac15(2), frac15(3),
  55.         frac15(4), frac15(5), frac15(6), frac15(7),
  56.         frac15(8), frac15(9), frac15(10), frac15(11),
  57.         frac15(12), frac15(13), frac15(14), frac15(15)
  58. #undef frac15
  59.     };
  60.  
  61.     if ( (data_x & 1) && left > 0 )
  62.       switch ( left )
  63.         {
  64.         default:
  65.           sample = ((uint)(psrc[1] & 0xf) << 8) + psrc[2];
  66.           *bufp = bits2frac(sample, 12);
  67.           inc_bufp(bufp, spread);
  68.           psrc += 3;
  69.           left -= 3;
  70.           break;
  71.         case 2:            /* xxxxxxxx xxxxdddd */
  72.           *bufp = bits2frac_4[psrc[1] & 0xf];
  73.         case 1:            /* xxxxxxxx */
  74.           left = 0;
  75.         }
  76.     while ( left >= 3 )
  77.     {    sample = ((uint)*psrc << 4) + (psrc[1] >> 4);
  78.         *bufp = bits2frac(sample, 12);
  79.         inc_bufp(bufp, spread);
  80.         sample = ((uint)(psrc[1] & 0xf) << 8) + psrc[2];
  81.         *bufp = bits2frac(sample, 12);
  82.         inc_bufp(bufp, spread);
  83.         psrc += 3;
  84.         left -= 3;
  85.     }
  86.     /* Handle trailing bytes. */
  87.     switch ( left )
  88.     {
  89.     case 2:                /* dddddddd ddddxxxx */
  90.         sample = ((uint)*psrc << 4) + (psrc[1] >> 4);
  91.         *bufp = bits2frac(sample, 12);
  92.         inc_bufp(bufp, spread);
  93.         *bufp = bits2frac_4[psrc[1] & 0xf];
  94.         break;
  95.     case 1:                /* dddddddd */
  96.         sample = (uint)*psrc << 4;
  97.         *bufp = bits2frac(sample, 12);
  98.         break;
  99.     case 0:                /* Nothing more to do. */
  100.         ;
  101.     }
  102.     *pdata_x = 0;
  103.     return bptr;
  104. }
  105.  
  106. /* ------ Strategy procedure ------ */
  107.  
  108. /* Use special (slow) logic for 12-bit source values. */
  109. private irender_proc(image_render_frac);
  110. private irender_proc_t
  111. image_strategy_frac(gx_image_enum *penum)
  112. {    if ( penum->bps > 8 )
  113.       {    if_debug0('b', "[b]render=frac\n");
  114.         return image_render_frac;
  115.       }
  116.     return 0;
  117. }
  118.  
  119. void
  120. gs_gximage4_init(gs_memory_t *mem)
  121. {    image_strategies.fracs = image_strategy_frac;
  122.     sample_unpack_12_proc = sample_unpack_12;
  123. }
  124.  
  125. /* ---------------- Rendering procedures ---------------- */
  126.  
  127. /* ------ Rendering for 12-bit samples ------ */
  128.  
  129. /* Render an image with more than 8 bits per sample. */
  130. /* The samples have been expanded into fracs. */
  131. #define longs_per_4_fracs (arch_sizeof_frac * 4 / arch_sizeof_long)
  132. typedef union {
  133.     frac v[4];
  134.     long all[longs_per_4_fracs];        /* for fast comparison */
  135. } color_fracs;
  136. #if longs_per_4_fracs == 1
  137. #  define color_frac_eq(f1, f2)\
  138.      ((f1).all[0] == (f2).all[0])
  139. #else
  140. #if longs_per_4_fracs == 2
  141. #  define color_frac_eq(f1, f2)\
  142.      ((f1).all[0] == (f2).all[0] && (f1).all[1] == (f2).all[1])
  143. #endif
  144. #endif
  145. private int
  146. image_render_frac(gx_image_enum *penum, const byte *buffer, int data_x,
  147.   uint w, int h, gx_device *dev)
  148. {    const gs_imager_state *pis = penum->pis;
  149.     gs_logical_operation_t lop = penum->log_op;
  150.     gx_dda_fixed_point pnext;
  151.     image_posture posture = penum->posture;
  152.     fixed xl, ytf;
  153.     fixed pdyx, pdyy;        /* edge of parallelogram */
  154.     int yt = penum->yci, iht = penum->hci;
  155.     const gs_color_space *pcs = penum->pcs;
  156.     cs_proc_remap_color((*remap_color)) = pcs->type->remap_color;
  157.     gs_client_color cc;
  158.     int device_color = penum->device_color;
  159.     const gx_color_map_procs *cmap_procs = gx_device_cmap_procs(dev);
  160.     cmap_proc_rgb((*map_rgb)) = cmap_procs->map_rgb;
  161.     cmap_proc_cmyk((*map_cmyk)) = cmap_procs->map_cmyk;
  162.     gx_device_color devc1, devc2;
  163.     gx_device_color _ss *spdevc = &devc1;
  164.     gx_device_color _ss *spdevc_next = &devc2;
  165. #define pdevc ((gx_device_color *)spdevc)
  166. #define pdevc_next ((gx_device_color *)spdevc_next)
  167.     int spp = penum->spp;
  168.     const frac *psrc = (const frac *)buffer + data_x * spp;
  169.     fixed xrun;            /* x at start of run */
  170.     int irun;            /* int xrun */
  171.     fixed yrun;            /* y ditto */
  172.     color_fracs run;        /* run value */
  173.     color_fracs next;        /* next sample value */
  174.     const frac *bufend = psrc + w;
  175.     int code;
  176.  
  177.     if ( h == 0 )
  178.       return 0;
  179.     pnext = penum->dda.pixel0;
  180.     xrun = xl = dda_current(pnext.x);
  181.     irun = fixed2int_var_rounded(xrun);
  182.     yrun = ytf = dda_current(pnext.y);
  183.     pdyx = dda_current(penum->dda.row.x) - penum->cur.x;
  184.     pdyy = dda_current(penum->dda.row.y) - penum->cur.y;
  185.     if_debug4('b', "[b]y=%d w=%d xt=%f yt=%f\n",
  186.           penum->y, w, fixed2float(xl), fixed2float(ytf));
  187.     run.v[0] = run.v[1] = run.v[2] = run.v[3] = 0;
  188.     next.v[0] = next.v[1] = next.v[2] = next.v[3] = 0;
  189.     cc.paint.values[0] = cc.paint.values[1] =
  190.       cc.paint.values[2] = cc.paint.values[3] = 0;
  191.     cc.pattern = 0;
  192.     (*remap_color)(&cc, pcs, pdevc, pis, dev, gs_color_select_source);
  193.     run.v[0] = ~psrc[0];        /* force remap */
  194.  
  195.     while ( psrc < bufend )
  196.     {    next.v[0] = psrc[0];
  197.         switch ( spp )
  198.         {
  199.         case 4:            /* cmyk */
  200.             next.v[1] = psrc[1];
  201.             next.v[2] = psrc[2];
  202.             next.v[3] = psrc[3];
  203.             psrc += 4;
  204.             if ( color_frac_eq(next, run) ) goto inc;
  205.             if ( device_color )
  206.             {    (*map_cmyk)(next.v[0], next.v[1],
  207.                         next.v[2], next.v[3],
  208.                         pdevc_next, pis, dev,
  209.                         gs_color_select_source);
  210.                 goto f;
  211.             }
  212.             decode_frac(next.v[0], cc, 0);
  213.             decode_frac(next.v[1], cc, 1);
  214.             decode_frac(next.v[2], cc, 2);
  215.             decode_frac(next.v[3], cc, 3);
  216.             if_debug4('B', "[B]cc[0..3]=%g,%g,%g,%g\n",
  217.                   cc.paint.values[0], cc.paint.values[1],
  218.                   cc.paint.values[2], cc.paint.values[3]);
  219.             if_debug1('B', "[B]cc[3]=%g\n",
  220.                   cc.paint.values[3]);
  221.             break;
  222.         case 3:            /* rgb */
  223.             next.v[1] = psrc[1];
  224.             next.v[2] = psrc[2];
  225.             psrc += 3;
  226.             if ( color_frac_eq(next, run) ) goto inc;
  227.             if ( device_color )
  228.             {    (*map_rgb)(next.v[0], next.v[1],
  229.                        next.v[2], pdevc_next, pis, dev,
  230.                        gs_color_select_source);
  231.                 goto f;
  232.             }
  233.             decode_frac(next.v[0], cc, 0);
  234.             decode_frac(next.v[1], cc, 1);
  235.             decode_frac(next.v[2], cc, 2);
  236.             if_debug3('B', "[B]cc[0..2]=%g,%g,%g\n",
  237.                   cc.paint.values[0], cc.paint.values[1],
  238.                   cc.paint.values[2]);
  239.             break;
  240.         case 1:            /* gray */
  241.             psrc++;
  242.             if ( next.v[0] == run.v[0] ) goto inc;
  243.             if ( device_color )
  244.             {    (*map_rgb)(next.v[0], next.v[0],
  245.                        next.v[0], pdevc_next, pis, dev,
  246.                        gs_color_select_source);
  247.                 goto f;
  248.             }
  249.             decode_frac(next.v[0], cc, 0);
  250.             if_debug1('B', "[B]cc[0]=%g\n",
  251.                   cc.paint.values[0]);
  252.             break;
  253.         }
  254.         (*remap_color)(&cc, pcs, pdevc_next, pis, dev,
  255.                    gs_color_select_source);
  256. f:        if_debug7('B', "[B]0x%x,0x%x,0x%x,0x%x -> %ld,%ld,0x%lx\n",
  257.             next.v[0], next.v[1], next.v[2], next.v[3],
  258.             pdevc_next->colors.binary.color[0],
  259.             pdevc_next->colors.binary.color[1],
  260.             (ulong)pdevc_next->type);
  261.         /* Even though the supplied colors don't match, */
  262.         /* the device colors might. */
  263.         if ( !dev_color_eq(devc1, devc2) )
  264.         {    /* Fill the region between */
  265.             /* xrun/irun and xl */
  266.             gx_device_color _ss *sptemp;
  267.  
  268.             if ( posture != image_portrait )
  269.             {    /* Parallelogram */
  270.                 code = (*dev_proc(dev, fill_parallelogram))
  271.                   (dev, xrun, yrun,
  272.                    xl - xrun, ytf - yrun, pdyx, pdyy,
  273.                    pdevc, lop);
  274.             }
  275.             else
  276.             {    /* Rectangle */
  277.                 int xi = irun;
  278.                 int wi = (irun = fixed2int_var_rounded(xl)) - xi;
  279.                 if ( wi < 0 ) xi += wi, wi = -wi;
  280.                 code = gx_fill_rectangle_device_rop(xi, yt,
  281.                         wi, iht, pdevc, dev, lop);
  282.             }
  283.             if ( code < 0 )
  284.               return code;
  285.             sptemp = spdevc;
  286.             spdevc = spdevc_next;
  287.             spdevc_next = sptemp;
  288.             xrun = xl;
  289.             yrun = ytf;
  290.         }
  291.         run = next;
  292. inc:        xl = dda_next(pnext.x);
  293.         ytf = dda_next(pnext.y);
  294.     }
  295.     /* Fill the final run. */
  296.     code = (*dev_proc(dev, fill_parallelogram))
  297.       (dev, xrun, yrun, xl - xrun, ytf - yrun, pdyx, pdyy, pdevc, lop);
  298.     return (code < 0 ? code : 1);
  299. }
  300.